CLASSIFICATION OF INSECT PESTS IN AGRICULTURE USING INCEPTION-RESNET-V2 ARCHITECTURE
DOI:
https://doi.org/10.35457/antivirus.v19i1.4107Keywords:
CNN, Inception-Resnet-V2, Hama Serangga, Deep LearningAbstract
Object recognition in images is a major challenge in digital image processing with wide applications, including agriculture. This research aims to develop a Convolutional Neural Network (CNN) model based on the Inception-ResNet-V2 architecture for insect pest classification in agriculture. The dataset contains 1,591 images from 13 pest classes, which were processed through preprocessing stages such as resizing, normalization, and augmentation to enhance data quality and variation. The model training process was conducted for 10 epochs, resulting in an accuracy of 89.52% with a loss of 0.4024. The research results indicate that the CNN model can be used to detect and classify insect pests with a high level of accuracy across several classes. This system is expected to help farmers identify pests more efficiently, support decision-making in pest control, and improve agricultural yields.
Downloads
References
D. Alamsyah and D. Pratama, “Implementasi Convolutional Neural Networks (CNN) untuk Klasifikasi Ekspresi Citra Wajah pada FER-2013 Dataset,” J. Teknol. Inf., vol. 4, no. 2, pp. 350–355, 2020, doi: 10.36294/jurti.v4i2.1714.
M. Sanjaya and E. Nurraharjo, “Deteksi Jenis Rempah-Rempah Menggunakan Metode Convolutional Neural Network Secara Real Time,” J. Sains Komput. Inform. (J-SAKTI, vol. 7, no. 1, pp. 22–31, 2023.
R. Abdulhakim, Carudin, and B. Arif Dermawan, “Analisis dan Penerapan Algoritma Convolutional Neural Network untuk Klasifikasi Kendaraan Prioritas,” J. Sains dan Inform., vol. 7, no. 2, pp. 135–144, 2021, doi: 10.34128/jsi.v7i2.335.
Samuel, K. R. Prilianti, H. Setiawan, P. Mimboro, and P. Korespondensi, “Perkebunan Sawit Menggunakan Model Convolutional Neural Network ( CNN ) pada Perangkat Lunak Sistem Informasi the Method of Automatic Tree Detection on Oil Palm Plantation Images Using Convolutional Neural Network ( Cnn ) Model Using,” J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 7, pp. 1689–1698, 2022, doi: 10.25126/jtiik.202296772.
B. E. Freeman, Ecological and Economic Entomology: A Global Synthesis. Wallingford, UK: CABI, pp. 35-37, 2020.
A. Hasby Bik, F. Tri Anggraeny, and E. Yulia Puspaningrum, “Klasifikasi Penyakit Ginjal Menggunakan Algoritma Hibrida Cnn-Elm,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 3, pp. 3836–3844, 2024, doi: 10.36040/jati.v8i3.9807.
R. Anantama, “Application of Cost-Sensitive Convolutional Neural Network for Pneumonia Detection,” J. Ilm. Kursor, vol. 11, no. 3, p. 101, 2022, doi: 10.21107/kursor.v11i3.264.
A. Y. W. dan R. S. I Wayan Suartika E. P, “JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: 2337-3539 (2301-9271 Print),” Klasifikasi Citra Menggunakan Convolutional Neural Netw. pada Caltech 101, vol. Vol. 5, No, no. 1, pp. 1–2, 2016.
E. N. Arrofiqoh and H. Harintaka, “Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Tanaman Pada Citra Resolusi Tinggi,” Geomatika, vol. 24, no. 2, p. 61, 2018, doi: 10.24895/jig.2018.24-2.810.
D. Husen, K. Kusrini, and K. Kusnawi, “Deteksi Hama Pada Daun Apel Menggunakan Algoritma Convolutional Neural Network,” J. Media Inform. Budidarma, vol. 6, no. 4, p. 2103, 2022, doi: 10.30865/mib.v6i4.4667.
M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions,” Computation, vol. 11, no. 3, 2023, doi: 10.3390/computation11030052.
R. Magdalena, S. Saidah, N. K. C. Pratiwi, and A. T. Putra, “Klasifikasi Tutupan Lahan Melalui Citra Satelit SPOT-6 dengan Metode Convolutional Neural Network (CNN),” J. Edukasi dan Penelit. Inform., vol. 7, no. 3, p. 335, 2021, doi: 10.26418/jp.v7i3.48195.
M. A. A. Fawwaz, K. N. Ramadhani, and F. Sthevani, “Klasifikasi Ras pada hewan peliharaan menggunakan Algoritma Convolutional Neural Network (CNN),” vol. 8, no. 1, pp. 715–730, 2020.
M. Fahmy Amin, “Confusion Matrix in Three-class Classification Problems: A Step-by-Step Tutorial,” J. Eng. Res., vol. 7, no. 1, pp. 0–0, 2023, doi: 10.21608/erjeng.2023.296718.
M. Luthfi Bangun Permadi and R. Gumilang, “Penerapan Algoritma CNN (Convolutional Neural Network) Untuk Deteksi Dan Klasifikasi Target Militer Berdasarkan Citra Satelit,” J. Sos. Teknol., vol. 4, no. 2, pp. 134–143, 2024, doi: 10.59188/jurnalsostech.v4i2.1138.
Dian, Purnawansyah, H. Darwis, and L. Nurhayati, “Klasifikasi Penyakit Bawang Merah Menggunakan Naïve Bayes dan Convolutional Neural Network,” Indones. J. Comput. Sci., vol. 12, no. 4, pp. 1932–1943, 2023, doi: 10.33022/ijcs.v12i4.3265.
G. A. Rakhmat and A. M. Yudantira, “Implementation and Optimization Of Inception Resnet-v2 with Data Balancing (Case Study Of Lung Disease Classification),” E3S Web Conf., vol. 484, 2024, doi: 10.1051/e3sconf/202448402010.
A. Sanampudi and S. Srinivasan, “Local search enhanced optimal Inception-ResNet-v2 for classification of long-term lung diseases in post-COVID-19 patients,” Automatika, vol. 65, no. 2, pp. 473–482, 2024, doi: 10.1080/00051144.2023.2295142.
J. Wang, X. He, S. Faming, G. Lu, H. Cong, and Q. Jiang, “A Real-Time Bridge Crack Detection Method Based on an Improved Inception-Resnet-v2 Structure,” IEEE Access, vol. 9, pp. 93209–93223, 2021, doi: 10.1109/ACCESS.2021.3093210.
Tarun R Jain · RahulJayyn, “Dangerous Farm Insects Dataset.” [Online]. Available: https://www.kaggle.com/datasets/tarundalal/dangerous-insects-dataset
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Antivirus : Jurnal Ilmiah Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License