• Diva Tifanny Adherda Universitas Perjuangan Tasikmalaya
  • Missi Hikmatyar Universitas PerJuangan
  • Ruuhwan Universitas Perjuangan
Abstract views: 50 , PDF downloads: 45
Keywords: gender, klasifikasi, pengenalan suara, RNN


The information technology field continues to progress rapidly. Technological progress is kept in check with such factors as touch, sight, and sound. Each man with another man has a characteristic difference, one that can be seen is by his voice. The processing of sound is an essential concept to all kinds of systems that require human interaction in its daily activities. One of the techniques used in processing speech is classification, which has a direct effect on speech recognition systems. SimpleRNN and LSTM are models of deep learning that can be used to classify sentiment. It can process data in such a sequence as sound, video, and text. These results provide accuracy 90% of the test data and 95% accuracy to the training data.


Download data is not yet available.


[1] N. Izzah, “KLASTERING SUARA BERDASARKAN GENDER MENGGUNAKAN ALGORITMA K-MEANS DARI HASIL EKSTRAKSI FFT (Fast Fourier Transform),” J. Ilm. Soulmath J. Edukasi Pendidik. Mat., vol. 6, no. 1, pp. 47–58, 2018, doi: 10.25139/sm.v6i1.790.
[2] D. A. Adi Rinaldi, Hendra, “Pengenalan Gender Melalui Suara dengan Algoritma Support Vector Machine (SVM),” no. x, pp. 1–10, 2016.
[3] Y. Mustaqim, E. Utami, and S. Raharjo, “KLASIFIKASI AUDIO MENGGUNAKAN WAVELET TRANSFORM DAN NEURAL NETWORK Yulianto,” J. Inform. Dan Teknol. Inf., vol. 4, no. 2, pp. 122–130, 2019.
[4] P. Tridarma and S. N. Endah, “Pengenalan Ucapan Bahasa Indonesia Menggunakan MFCC dan Recurrent Neural Network,” J. Masy. Inform., vol. 11, no. 2, pp. 36–44, 2020, [Online]. Available:
[5] D. E. R. Riska Yessivirna 1 , Marji2, “Klasifikasi Suara Berdasarkan Gender (Jenis Kelamin) Dengan Metode K-Nearest Neighbor (Knn),” Univ. Brawijaya Malang, no. 37, pp. 1–31, 2015.
[6] H. Azis, Klasifikasi Penyakit Jantung Menggunakan Metode Recurrent Neural Network (RNN). 2018.
[7] S. Safriadi and R. Rahmadani, “Klasifikasi Gender Berdasarkan Suara Dengan Naive Bayes Dan Mel Frequency Cepstral Coefficient,” VOCATECH Vocat. Educ. Technol. J., vol. 2, no. 1, pp. 19–26, 2020, doi: 10.38038/vocatech.v2i1.45.
[8] A. Apsarini, “Klasifikasi Jenis Kelamin Berdasarkan Suara Menggunakan Metode Learning Vector,” vol. 4, no. 7, pp. 2301–2308, 2020.
[9] F. A. Hermawati and R. A. Zai, “Sistem Deteksi Pemakaian Masker Menggunakan Metode Viola-Jones dan Convolutional Neural Networks (CNN),” Proceeding KONIK (Konferensi Nas. Ilmu Komputer), vol. 5, pp. 182–187, 2021.
[10] R. A. Asmara, B. S. Andjani, U. D. Rosiani, and P. Choirina, “KLASIFIKASI JENIS KELAMIN PADA CITRA WAJAH MENGGUNAKAN METODE NAIVE BAYES,” pp. 212–217.
[11] R. B. Handoko and S. Suyanto, “Klasifikasi Gender Berdasarkan Suara Menggunakan Support Vector Machine,” Indones. J. Comput., vol. 4, no. 1, p. 9, 2019, doi: 10.21108/indojc.2019.4.1.244.

PlumX Metrics

How to Cite
D. T. Adherda, M. Hikmatyar, and Ruuhwan, “GENDER CLASSIFICATION BASED ON VOICE USING RECURRENT NEURAL NETWORK (RNN)”, antivirus, vol. 17, no. 1, pp. 111 - 122, Oct. 2023.