Sentiment Analysis Of Mie Gacoan Reviews In Blitar City On The Grab Application Using The Support Vector Machine Method

Authors

  • Bayu Samudra Universitas Islam Balitar
  • Sri Lestanti Universitas Islam Balitar
  • Rizky Dwi Romadhona Universitas Islam Balitar

DOI:

https://doi.org/10.35457/jwf5eb71

Keywords:

Sentiment Analysis, Support Vector Machine (SVM), Pre Processing, TF-IDF, Mie Gacoan, Confusion Matrix Grid Search and Cross Validation.

Abstract

This study aims to analyze customer review sentiments for Mie Gacoan restaurant in Blitar City through the Grab application using the Support Vector Machine (SVM) algorithm. Customer reviews are categorized into three sentiment classes: positive, negative, and neutral. And the total amount of data used is 991 data. The research process includes manual data collection, text preprocessing, weighting using the TF-IDF method, and classification with the SVM algorithm. Model performance is evaluated using a confusion matrix with precision, recall, and F1-score metrics. And for the testing of the algorithm method using Grid Search and Cross Validation. The results show that the linear kernel achieves the best performance with an F1-score of 0.4649. Positive sentiment dominates the reviews, while negative and neutral sentiments are less prevalent. This study demonstrates that SVM is effective for classifying sentiments in customer reviews and can assist restaurant managers in identifying areas for service improvement.

References

Armawan, A., et al. (2023). Optimasi Parameter Support Vector Machine Dengan Algoritma Genetika Untuk Analisis Sentimen Pada Media Sosial Instagram.

https://doi.org/10.25126/jtiik.20241117584

Prasetyo, A., & Putra, B. (2024). Analisis Sentimen Twitter Pada Cryptocurrency Menggunakan Bidirectional Encoder Representations From Transformers (BERT).

Radiena, I., & Nugroho, H. (2023). Analisis Sentimen Berbasis Aspek Pada Ulasan Aplikasi Kai Access Menggunakan Metode Support Vector Machine.

Salsabillah, N., et al. (2024). Text Mining untuk Analisis Data Tidak Terstruktur.

Sugiyarto, D., et al. (2024). Perkembangan Teknologi Transportasi Online di Indonesia.

Susanti, F., & Rianto, A. I. (2020). Analisis Sentimen Penyedia Layanan by.U pada Ulasan Google Play Store dengan Metode TF-IDF dan Support Vector Machine (SVM). Jurnal lImiah Informatika, 7(2).

https://doi.org/10.37792/jukanti.v6i1.836

Tinaliah, T., & Elizabeth, T. (2022). Analisis Sentimen Ulasan Aplikasi PrimaKu Menggunakan Metode Support Vector Machine. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(4), 3436–3442.

https://doi.org/10.35957/jatisi.v9i4.3586

Vina, F., Lutfi, H., Dian, C. R. N., & Ahmad, H. A. (2022). Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 9(4), 3436–3442.

https://doi.org/10.35957/jatisi.v9i4.3586

Zahro, F. (2024, August 5). Rekomendasi Mie Pedas di Blitar: Pedasnya Bikin Lidah Bergoyang! Bicara Blitar.

http://www.bicarablitar.com/2024/08/rekomendasi-mie-pedas-di-blitar.html

Downloads

Published

2025-09-22

Issue

Section

Articles

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/ejournal.unisbablitar.ac.id/public_html/plugins/generic/citations/CitationsPlugin.php on line 68

How to Cite

Sentiment Analysis Of Mie Gacoan Reviews In Blitar City On The Grab Application Using The Support Vector Machine Method. (2025). JOSAR (Journal of Students Academic Research), 10(2), 129-139. https://doi.org/10.35457/jwf5eb71