Sentiment Analysis On Evos Esports Team Instagram Social Media Using Convolutional Neural Network (CNN)
DOI:
https://doi.org/10.35457/4xw3mn98Keywords:
Convolutional Neural Network, Deep Learning, EVOS Esports, Instagram, Sentiment Analysis.Abstract
The rapid growth of the esports industry in Indonesia presents unique challenges for professional teams such as EVOS Esports, particularly in strengthening fan engagement and loyalty in the digital era. This study aims to analyze fan sentiment toward the official Instagram posts of EVOS Esports using a deep learning approach with a Convolutional Neural Network (CNN). The research process involved data collection through web scraping, followed by preprocessing stages such as cleaning, case transformation, normalization, tokenization, stopword removal, and stemming. The dataset was then labeled, split into training and testing sets (90:10), and used for CNN model training and evaluation through a confusion matrix. The results demonstrate that the CNN model successfully classified comments into three sentiment categories—positive, negative, and neutral—with an accuracy of 92%. The model also achieved a precision of 0.92, recall of 0.92, and an F1-score of 0.92, indicating very good classification performance. Sentiment distribution analysis of 11,305 comments showed that neutral sentiment dominated (47.24%), followed by positive (30.12%) and negative (22.64%). These findings provide valuable insights into fan perceptions of esports team performance on social media. For future research, expanding the sentiment lexicon with terms commonly used in online communities is recommended to further enhance classification accuracy.
References
Afidah, D. I., Handayani, S. F., Pratiwi, R. W., & Sari, S. N. (2022). Sentimen Ulasan Destinasi Wisata Pulau Bali Menggunakan Bidirectional Long Short Term Memory Sentiment of Balis Touristic Destination Reviews Using Bidirectional Long Short Term Memory. 21(3). https://doi.org/10.30812/matrik.v21i3.1402
Anam, S., Widhiatmoko, F., Yanti, I., Fitriah, Z., Sa’adah, U., & Guci, A. N. (2023). Pengantar Algoritma dan Pemrograman dengan Python. Universitas Brawijaya Press. https://books.google.co.id/books?id=hnXoEAAAQBAJ
Anton, A., Nissa, N. F., Janiati, A., Cahya, N., & Astuti, P. (2021). Application of Deep Learning Using Convolutional Neural Network (CNN) Method For Women’s Skin Classification. Scientific Journal of Informatics, 8(1), 144–153. https://doi.org/10.15294/sji.v8i1.26888
Anwar, K. (2022). Analisa sentimen Pengguna Instagram Di Indonesia Pada Review Smartphone Menggunakan Naive Bayes. KLIK: Kajian Ilmiah Informatika Dan Komputer, 2(4), 148–155. https://doi.org/10.30865/klik.v2i4.315
Arsyad, Z. (2020). Text Mining Menggunakan Generate Association Rule With Weight (GARW) Algorithm Untuk Analisis Teks Web Crawler. INTERNAL (Information System Journal), 2(2), 153–171. https://doi.org/10.32627/internal.v2i2.304
Asrumi, A., Suharijadi, D., Setiari, A. D., & Wulanda, D. P. (2023). Analisis Sentimen Dan Penggalian Opini. CV.EUREKA MEDIA AKSARA. https://doi.org/https://repository.unej.ac.id/xmlui/handle/123456789/119082
Astuti, K. C., Firmansyah, A., & Riyadi, A. (2024). Implementasi Text Mining Untuk Analisis Sentimen Masyarakat Terhadap Ulasan Aplikasi Digital Korlantas Polri pada Google Play Store. REMIK: Riset Dan E-Jurnal Manajemen Informatika Komputer, 8(1), 383–394.
Burnama, Z. Y., Rosid, M. A., & Azizah, N. L. (2024). Analisis Sentimen Pada Komentar Youtube Dalam Turnamen MPL Season 13 Dengan Metode Ensemble Machine Learning Sentiment Analysis on YouTube Comments in MPL Season 13 Tournament Using Ensemble Machine Learning Method.
Diaz Tiyasya Putra, & Erwin Budi Setiawan. (2023). Sentiment Analysis on Social Media with Glove Using Combination CNN and RoBERTa. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(3), 457–563. https://doi.org/10.29207/resti.v7i3.4892
Dr. Poornima G. Naik, Dr. Girish R. Naik, & Mr. M.B.Patil. (2021). Conceptualizing Python In Google (Issue January).
Efraim, D. A. (2023). Analisis Sentimen Pada Sosial Media Instagram Menggunakan Algoritma Naive Bayes ( Studi Kasus : Timnas Futsal Indonesia ). April 2012, 498–509.
Fachrul, K., Lubis, R., & Wandebori, H. (2024). Analisis Strategi Bisnis Dalam Meningkatkan Viewers Engagement (Studi Kasus Pada Evos E-Sport). 5(1).
Fahrudin, T. M., Ruhui, A., Sari, F., Lisanthoni, A., & Dewi, A. A. (2022). Analisis Speech-to-Text pada Video Mengandung Kata Kasar dan Ujaran Kebencian dalam Ceramah Agama Islam Menggunakan Interpretasi Audiens dan Visualisasi Word Cloud. 5, 190–202.
Handoko, H., Asrofiq, A., Junadhi, J., & Negara, A. S. (2024). Sentiment Analysis of Sirekap Tweets Using CNN Algorithm. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 8(2), 312–329. https://doi.org/10.29407/intensif.v8i2.23046
Jannah, Y. A. N., & Prasetyo, R. B. (2022). Analisis Sentimen dan Emosi Publik pada Awal Pandemi COVID-19 Berdasarkan Data Twitter dengan Pendekatan Berbasis Leksikon (Analysis of Public Sentiment and Emotion at the Beginning of COVID-19 Pandemic Based on Twitter Data with Lexicon Based Approach). Seminar Nasional Official Statistics 2022, 597–607.
Kirci, P. (2020). Sentiment Analysis With Instagram Data. https://api.semanticscholar.org/CorpusID:267825392
Liu, Z., Lin, Y., & Sun, M. (2023). Representation Learning for Natural Language Processing, Second Edition. In Representation Learning for Natural Language Processing, Second Edition. https://doi.org/10.1007/978-981-99-1600-9
Marlene, G., & Sahrani, R. (2021). Moderator Role of Social Support in Relationship Between Social Comparison and Life Satisfaction of Instagram Users. Proceedings of the International Conference on Economics, Business, Social, and Humanities (ICEBSH 2021), 570(Icebsh), 958–963. https://doi.org/10.2991/assehr.k.210805.151
Maulana, A. R., & Rochmawati, N. (2020). Opinion Mining Terhadap Pemberitaan Corona di Instagram menggunakan Convolutional Neural Network. Journal of Informatics and Computer Science (JINACS), 2(01), 53–59. https://doi.org/10.26740/jinacs.v2n01.p53-59
Naf’an, E., Islami, F., & Gushelmi, G. (2022). Dasar-dasar Deep Learning dan Contoh Aplikasinya. http://repository.upiyptk.ac.id/9683/1/Buku%2B1%2BDasar-Dasar%2BDeep%2BLearning.pdf
Parameswari, P. L., & Prihandoko. (2022). Penggunaan Convolutional Neural Network Untuk Analisis Sentimen Opini Lingkungan Hidup Kota Depok Di Twitter. Jurnal Ilmiah Teknologi Dan Rekayasa, 27(1), 29–42. https://doi.org/10.35760/tr.2022.v27i1.4671
Pratama, A. E., Ariesta, A., & Gata, G. (2022). Analisis Sentimen Masyarakat Terhadap Tim Nasional Indonesia Pada Piala AFF 2020 Menggunakan Algoritma K-Nearest Neighbors. Jurnal TICOM: Technology of Information and Communication, 10(3), 187–196. https://jurnal-ticom.jakarta.aptikom.org/index.php/Ticom/article/view/33/47
Purnamasari, D., Bayu, A., Desy, A., Fanka, W. A. P., Reza, A., Safrila, M., Yanda, O. N., & Hidayati, U. (2023). Pengantar Metode Analisis Sentimen. In Gunadarma Penerbit.
Putri, T. H., & Priyatna, C. (2024). Analisis Media Monitoring (Tiara Harjono Putri, dkk.) | 9 Madani. Jurnal Ilmiah Multidisipline, 2(3), 9–21. https://doi.org/10.5281/zenodo.11099237
Qudsi, D. H., Lubis, J. H., Syaliman, K. U., & Najwa, N. F. (2021). Analisis Sentimen Pada Data Saran Mahasiswa Terhadap Kinerja Departemen Di Perguruan Tinggi Menggunakan Sentiment Analysis In The Student’s Reviews Of College Departement Perfomance Using. 8(5). https://doi.org/10.25126/jtiik.202184842
Rudiyanto, R. A., & Setiawan, E. B. (2024). Sentiment Analysis Using Convolutional Neural Network (CNN) and Particle Swarm Optimization on Twitter. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 188–195. https://doi.org/10.33480/jitk.v9i2.5201
Saifudin, A. (2022). LEVEL DATA DAN ALGORITMA UNTUK PENANGANAN KETIDAKSEIMBANGAN KELAS. Pascal Books. https://books.google.co.id/books?id=MG6dEAAAQBAJ
Salsabila Septiani, Nabila Putri, Dara Jessica, & Arya Saputra. (2024). Sentiment Analysis Of Social Media Data Using Deep Learning Techniques. International Journal of Computer Technology and Science, 1(2), 08–14. https://doi.org/10.62951/ijcts.v1i2.59
Sari, D. N., & Basit, A. (2020). Media Sosial Instagram Sebagai Media Informasi Edukasi. Persepsi: Communication Journal, 3(1), 23–36. https://doi.org/10.30596/persepsi.v3i1.4428
Suci Amaliyah Muzakkir. (2023). Analisis Sentimen Masyarakat Indonesia Terhadap Kebijakan Merdeka Belajar Pada Media Sosial Twitter.
Wahana, A., Zulfikar, W. B., Wildiansyah, W. N., Atmadja, A. R., Ramdania, D. R., & Subaeki, B. (2021). A Deep Learning Approach to Analyze the Sentiment of Online Game Users. Proceeding of 2021 7th International Conference on Wireless and Telematics, ICWT 2021, 1–5. https://doi.org/10.1109/ICWT52862.2021.9678416
Wahyudi, F., & Kencana, W. H. (2024). Instagram Content Strategy For Esports Events @mpl.id.official In Increasing Esports Tourism. Journal of Humanities Social Sciences and Business (Jhssb), 3(2), 414–430. https://doi.org/10.55047/jhssb.v3i2.959
Wiliani, N., Hidayah, N., Rahman, T. K. A., & Ramli, S. (2023). Perbandingan Arsitektur CNN AlexNet dan VGG16 untuk Klasifikasi pada Gambar Permukaan Solar Panel yang Rusak. Penerbit NEM. https://books.google.co.id/books?id=eJ32EAAAQBAJ
Yusril, A. N., Larasati, I., & Aini, Q. (2020). Implementasi Text Mining Untuk Advertising Dengan Menggunakan Metode K-Means Clustering Pada Data Tweets Gojek Indonesia. Sistemasi, 9(3), 586. https://doi.org/10.32520/stmsi.v9i3.924
Zaenab Kurnia, Amalina Maryam Zakiyyah, Nur Qodariyah Fitriyah, & Agus Milu Susetyo. (2024). Analisis Sentimen Masyarakat Berdasarkan Komentar Kerja Sama Tiktok Shop dan Tokopedia di Instagram Menggunakan Metode Naïve Bayes Classifier. Jurnal Penelitian Teknologi Informasi Dan Sains, 2(2), 115–125. https://doi.org/10.54066/jptis.v2i2.1978
Zahri, A., Adam, R., & Setiawan, E. B. (2023). Social Media Sentiment Analysis using Convolutional Neural Network (CNN) dan Gated Recurrent Unit (GRU). Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika (JITEKI), 9(1), 119–131. https://doi.org/10.26555/jiteki.v9i1.25813
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mohammad Amir Fatkhi Zen, Haris Yuana, Udkhiati Mawaddah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/ejournal.unisbablitar.ac.id/public_html/plugins/generic/citations/CitationsPlugin.php on line 68




