A Convolutional Neural Network Model for the Handwritten Hijaiyah Recognition System (SiPuTiH) with Domain-Specific Data Augmentation
DOI:
https://doi.org/10.35457/jares.v10i2.5430Keywords:
CNN, Data Augmentation, Deep Learning, Hijaiyah Handwriting RecognitionAbstract
This paper presents SiPuTiH, a Convolutional Neural Network (CNN)-based approach for handwritten Hijaiyah character recognition that addresses performance degradation caused by morphological variations in handwriting. The study employs a dataset of 1,680 handwritten images representing 30 Hijaiyah characters, where domain-specific data augmentation is applied solely during the training phase. The augmentation strategy incorporates controlled geometric and stroke-based transformations, including rotation, scaling, shear, slant variation, and stroke thickness adjustment, to model realistic handwriting diversity. The proposed CNN architecture consists of multiple convolutional layers with ReLU activation, max-pooling operations, and a softmax classifier. Experimental results show that the proposed method achieves an accuracy of 99.70%, with weighted precision and F1-score of 99.85% and 99.77%, respectively. Furthermore, the use of domain-specific data augmentation effectively reduces misclassification among visually similar characters, such as ta and tsa, demonstrating improved robustness and generalization capability.
Downloads
References
Alrobah, N., & Albahli, S. (2021). A Hybrid Deep Model for Recognizing Arabic Handwritten Characters. IEEE Access, 9, 87058–87069. https://api.semanticscholar.org/CorpusID:235616581
Angraheni, N. R., Efendi, R., & Purwandari, E. P. (2017). Pengenalan Tulisan Tangan Huruf Hijaiyah Sambung Menggunakan Algoritma Template Matching Correlation. Rekursif: Jurnal Informatika, 5(1). https://doi.org/https://doi.org/10.33369/rekursif.v5i1.2551
Balaha, H. M., Ali, H. A., Saraya, M. S., & Badawy, M. M. (2020). A new Arabic handwritten character recognition deep learning system (AHCR-DLS). Neural Computing and Applications, 33, 6325–6367. https://api.semanticscholar.org/CorpusID:226328712
Budiman, S. N., Lestanti, S., & Yuana, H. (2023). Klasifikasi Alfabet Sistem Isyarat Bahasa Indonesia (SIBI) Menggunakan Computer Vision dan Deep Learning. Penerbit NEM.
Dwiaji, A. Z., Junianto, B., Haswanto, S. P., & Yusnadi, M. R. (2024). Literature Review: Penggunaan Convolutional Neural Networks Untuk Klasifikasi Citra Tumor Otak. Buletin Ilmiah Ilmu Komputer Dan Multimedia (BIIKMA), 2(2), 491–496. https://www.jurnalmahasiswa.com/index.php/biikma/article/view/1632
El Khayati, M., Kich, I., & Taouil, Y. (2024). CNN-based Methods for Offline Arabic Handwriting Recognition: A Review. Neural Processing Letters, 56(2), 115. https://doi.org/10.1007/s11063-024-11544-w
Gautam, R., Sinha, A., Mahmood, H. R., Singh, N., Ahmed, S., Rathore, N., Bansal, H., & Raza, M. S. (2022). Enhancing Handwritten Alphabet Prediction with Real-time IoT Sensor Integration in Machine Learning for Image. Journal of Smart Internet of Things, 2022(1), 53–64. https://doi.org/10.2478/jsiot-2022-0004
Gomes, R., Schmith, J., Figueiredo, R., Freitas, S., Machado, G., Romanini, J., & Carrard, V. (2023). Use of Artificial Intelligence in the Classification of Elementary Oral Lesions from Clinical Images. International Journal of Environmental Research and Public Health, 20(5), 3894. https://doi.org/10.3390/ijerph20053894
Mawaddah, S., & Suciati, N. (2020). Pengenalan Karakter Tulisan Tangan Menggunakan Ekstraksi Fitur Bentuk Berbasis Chain Code. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(4), 683–692. https://doi.org/10.25126/jtiik.2020742022
Miftahul Amri, M. (2022). Studi Banding Implementasi Metode Hidden Markov Model dalam Pengenalan Tulisan Tangan. Jurnal Genesis Indonesia, 1(01), 42–54. https://doi.org/10.56741/jgi.v1i01.26
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0
Ullah, Z., & Jamjoom, M. M. (2022). An intelligent approach for Arabic handwritten letter recognition using convolutional neural network. PeerJ Computer Science, 8. https://api.semanticscholar.org/CorpusID:249146184
Downloads
Published
Issue
Section
License
Copyright (c) 2025 JARES (Journal of Academic Research and Sciences)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License




