A Convolutional Neural Network Model for the Handwritten Hijaiyah Recognition System (SiPuTiH) with Domain-Specific Data Augmentation

Authors

  • Saiful Nur Budiman Universitas Islam Balitar
  • Sri Lestanti Universitas Islam Balitar
  • Sandi Widya Permana Universitas Islam Balitar

DOI:

https://doi.org/10.35457/jares.v10i2.5430

Keywords:

CNN, Data Augmentation, Deep Learning, Hijaiyah Handwriting Recognition

Abstract

This paper presents SiPuTiH, a Convolutional Neural Network (CNN)-based approach for handwritten Hijaiyah character recognition that addresses performance degradation caused by morphological variations in handwriting. The study employs a dataset of 1,680 handwritten images representing 30 Hijaiyah characters, where domain-specific data augmentation is applied solely during the training phase. The augmentation strategy incorporates controlled geometric and stroke-based transformations, including rotation, scaling, shear, slant variation, and stroke thickness adjustment, to model realistic handwriting diversity. The proposed CNN architecture consists of multiple convolutional layers with ReLU activation, max-pooling operations, and a softmax classifier. Experimental results show that the proposed method achieves an accuracy of 99.70%, with weighted precision and F1-score of 99.85% and 99.77%, respectively. Furthermore, the use of domain-specific data augmentation effectively reduces misclassification among visually similar characters, such as ta and tsa, demonstrating improved robustness and generalization capability.

Downloads

Download data is not yet available.

References

Alrobah, N., & Albahli, S. (2021). A Hybrid Deep Model for Recognizing Arabic Handwritten Characters. IEEE Access, 9, 87058–87069. https://api.semanticscholar.org/CorpusID:235616581

Angraheni, N. R., Efendi, R., & Purwandari, E. P. (2017). Pengenalan Tulisan Tangan Huruf Hijaiyah Sambung Menggunakan Algoritma Template Matching Correlation. Rekursif: Jurnal Informatika, 5(1). https://doi.org/https://doi.org/10.33369/rekursif.v5i1.2551

Balaha, H. M., Ali, H. A., Saraya, M. S., & Badawy, M. M. (2020). A new Arabic handwritten character recognition deep learning system (AHCR-DLS). Neural Computing and Applications, 33, 6325–6367. https://api.semanticscholar.org/CorpusID:226328712

Budiman, S. N., Lestanti, S., & Yuana, H. (2023). Klasifikasi Alfabet Sistem Isyarat Bahasa Indonesia (SIBI) Menggunakan Computer Vision dan Deep Learning. Penerbit NEM.

Dwiaji, A. Z., Junianto, B., Haswanto, S. P., & Yusnadi, M. R. (2024). Literature Review: Penggunaan Convolutional Neural Networks Untuk Klasifikasi Citra Tumor Otak. Buletin Ilmiah Ilmu Komputer Dan Multimedia (BIIKMA), 2(2), 491–496. https://www.jurnalmahasiswa.com/index.php/biikma/article/view/1632

El Khayati, M., Kich, I., & Taouil, Y. (2024). CNN-based Methods for Offline Arabic Handwriting Recognition: A Review. Neural Processing Letters, 56(2), 115. https://doi.org/10.1007/s11063-024-11544-w

Gautam, R., Sinha, A., Mahmood, H. R., Singh, N., Ahmed, S., Rathore, N., Bansal, H., & Raza, M. S. (2022). Enhancing Handwritten Alphabet Prediction with Real-time IoT Sensor Integration in Machine Learning for Image. Journal of Smart Internet of Things, 2022(1), 53–64. https://doi.org/10.2478/jsiot-2022-0004

Gomes, R., Schmith, J., Figueiredo, R., Freitas, S., Machado, G., Romanini, J., & Carrard, V. (2023). Use of Artificial Intelligence in the Classification of Elementary Oral Lesions from Clinical Images. International Journal of Environmental Research and Public Health, 20(5), 3894. https://doi.org/10.3390/ijerph20053894

Mawaddah, S., & Suciati, N. (2020). Pengenalan Karakter Tulisan Tangan Menggunakan Ekstraksi Fitur Bentuk Berbasis Chain Code. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(4), 683–692. https://doi.org/10.25126/jtiik.2020742022

Miftahul Amri, M. (2022). Studi Banding Implementasi Metode Hidden Markov Model dalam Pengenalan Tulisan Tangan. Jurnal Genesis Indonesia, 1(01), 42–54. https://doi.org/10.56741/jgi.v1i01.26

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-0197-0

Ullah, Z., & Jamjoom, M. M. (2022). An intelligent approach for Arabic handwritten letter recognition using convolutional neural network. PeerJ Computer Science, 8. https://api.semanticscholar.org/CorpusID:249146184

Downloads

Published

2025-09-01

How to Cite

A Convolutional Neural Network Model for the Handwritten Hijaiyah Recognition System (SiPuTiH) with Domain-Specific Data Augmentation. (2025). JARES (Journal of Academic Research and Sciences), 10(2), 10-20. https://doi.org/10.35457/jares.v10i2.5430