APPLICATION OF K-NEAREST NEIGHBOR ALGORITHM FOR CLASSIFICATION OF DIABETES MELLITUS

CASE STUDY : RESIDENTS OF JATITENGAH VILLAGE

  • Happy Andrian Dwi Fasnuari Universitas Islam Balitar
  • Haris Yuana Islamic University of Balitar
  • M. Taofik Chulkamdi Islamic University of Balitar
Abstract views: 1341 , PDF downloads: 3680
Keywords: Diabetes Mellitus, Data Mining, Classification, K-Nearest Neighbor Algorithm, KNN Algorithm, KNN

Abstract

Diabetes is a disease characterized by high levels of sugar in the blood which causes this disease to be very dangerous. If diabetes is not controlled properly it will lead to death. The death rate due to diabetes mellitus is relatively high because the patient does not feel the symptoms of diabetes or does not understand the characteristics of diabetes. To determine a person suffering from diabetes mellitus, several medical tests are needed so that the diagnostic results can be guaranteed authenticity and the clinical trial process certainly takes a long time. long. Based on these problems, a program for the classification of diabetes mellitus was made using the K-Nearest Neighbor (KNN) algorithm. The KNN algorithm is a method for classifying new objects based on training data that has the closest neighbor to the object. This study uses 8 variables, namely easy thirst, weight loss despite regular food consumption, high blood pressure, there is a history of diabetes in the family, wounds that are difficult to heal, frequent urination at night, results of blood sugar checks and age. The data used are 108 training data and 27 testing data resulting in 93% accuracy at K=9, 100% precision, 60% recall and 75% F1-Score. With an accuracy rate of 93%, this study is considered to have succeeded in applying the KNN method to classify diabetes mellitus.

Downloads

Download data is not yet available.

References

Khairani, “Hari Diabetes Sedunia Tahun 2018,” Pus. Data dan Inf. Kementrian Kesehat. RI, pp. 1–8, 2019.

D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

S. Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung,” Indones. J. Data Sci., vol. 1, no. 3, pp. 79–86, 2020, doi: 10.33096/ijodas.v1i3.20.

Abdul Azis, Danar Putra Pamungkas, and Ahmad Bagus Setiawan, “Analisa Perbandingan Algoritma Euclidean Dan Manhattan Distance Dalam Identifikasi Wajah,” Semin. Nas. Inov. Teknol., pp. 219–224, 2021.

D. Garnita, “Faktor Risiko Diabetes Melitus Di Indonesia,” Fkm Ui, p. 118, 2012.

Y. Yahya and W. Puspita Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada ‘Lombok Vape On,’” Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020, doi: 10.29408/jit.v3i2.2279.

J. Leskovec and J. D. Ullman, “Mining of Massive Datasets,” 2014.

M. M. Baharuddin, H. Azis, and T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274.

I. Pratiwi, “Analisis Performa Metode K- Nearest Neighbor ( KNN ) dan Crossvalidation pada Data Penyakit Cardiovascular,” vol. 2, no. 1, pp. 21–28, 2021.

P. E. Amilia R., “Klasifikasi Diagnosa Penyakit Demam Berdarah Dengue Pada Anak Menggunakan Metode K-Nearest Neighbor Studi Kasus Rumah Sakit Pku Muhammadiyah Ujung Pangkah Gresik,” Pap. Knowl. . Towar. a Media Hist. Doc., vol. 2, no. 2, pp. 1–10, 2014.

R. Wahyudi, M. Orisa, and N. Vendyansyah, “Penerapan Algoritma K-Nearest Neighbors Pada Klasifikasi,” J. Mhs. Tek. Inform., vol. 5, no. 2, 2021.

W. Musu, A. Ibrahim, and Heriadi, “Pengaruh Komposisi Data Training dan Testing terhadap Akurasi Algoritma C4 . 5,” Pros. Semin. Ilm. Sist. Inf. Dan Teknol. Inf., vol. X, no. 1, pp. 186–195, 2021.

I. A. A. Angreni, S. A. Adisasmita, and M. I. Ramli, “Terhadap Tingkat Akurasi Identifikasi Kerusakan Jalan,” vol. 7, no. 2, pp. 63–70, 2018.

PlumX Metrics

Published
2022-10-18
How to Cite
[1]
H. A. Dwi Fasnuari, H. Yuana, and M. T. Chulkamdi, “APPLICATION OF K-NEAREST NEIGHBOR ALGORITHM FOR CLASSIFICATION OF DIABETES MELLITUS : CASE STUDY : RESIDENTS OF JATITENGAH VILLAGE”, antivirus, vol. 16, no. 2, pp. 133-142, Oct. 2022.