The use of Artificial Intelligence (AI) in Fraud Detection by Government Auditors: A Systematic Literature Review

Authors

  • An Suci Azzahra Universitas Pembangunan Pancabudi

Keywords:

Artificial Intelligence (AI), Fraud Detection, Government Auditors, Public Sector Auditing, Literature Review

Abstract

This study examines the role of artificial intelligence (AI) in fraud detection by government auditors through a systematic literature review of 17 scientific articles published between 2023 and 2025. The increasing complexity of financial transactions and the limitations of traditional audit methods underscore the need for innovative solutions. This review aims to identify the benefits, challenges, and driving factors for the adoption of AI technology in fraud detection. Using a systematic approach, the study analyzes the potential of AI, particularly machine learning and data mining techniques, in enhancing efficiency and accuracy in detecting data anomalies. The findings indicate that AI significantly strengthens auditors' capabilities but faces challenges such as skilled human resource limitations, privacy and ethical issues, and infrastructure needs. The successful adoption of AI depends on organizational readiness, regulatory support, and auditor competence. AI serves as a powerful supporting tool rather than a replacement for auditors. Integration with technologies like blockchain can further enhance fraud detection systems. This review provides strategic recommendations for academics and practitioners in the public sector, contributing to a holistic understanding of AI's role in fraud detection.

References

Bakti, S., Pratiwi, E., Marpaung, D., & Siregar, N. H. A. (2025). Model Heisqual Sebagai Instrumen Deteksi Dini Krisis Integritas Akademik: Tinjauan Literatur Terhadap Kasus Pemalsuan Ijazah di Indonesia. Kalianda Halok Gagas, 8(2), 97–106.

Caseba, F. L., & Dewayanto, T. (2024). Penerapan Artificial Intelligence, Big Data, Dan Blockchain Dalam Fintech Payment Terhadap Risiko Penipuan Komputer (Computer Fraud Risk): a Systematic Literature Review. Diponegoro Journal Of Accounting, 1–15.

Irianti, L. R., Nuswantara, D. A., & Pujiono. (2021). The Role of Internal Auditors in Fraud Prevention: A Systematic Literature Review (SLR). Journal of Business and Information Systems, 3(1), 34–48.

Jaiz, Z., Azmi, S. N. S., Hasini, N. F. M., Samsudin, S. N., Izhar, N. I., Idris, N. A., & Hassan, S. A. A. A. (2024). Online Scam: A Systematic Literature Review. Jurnal ’Ulwan, 9(1), 257–280.

Korat, C., & Munandar, A. (2025). Penerapan Core Tax Administration System (CTAS) Langkah Meningkatkan Kepatuhan Perpajakan Di Indonesia. Jurnal Riset Akuntansi Politala, 8(1), 16–29. https://doi.org/10.34128/jra.v8i1.453

Novida, D. R. (2025). Evolusi Sistem Informasi Akuntansi dalam Era Digital: Tinjauan Literatur tentang Tren, Tantangan, dan Peluang. Jurnal Minfo Polgan, 14(1), 77–85. https://doi.org/10.33395/jmp.v14i1.14628

Nurarifah, S., & Kuntadi, C. (2024). Factors Affecting Financial Statement Fraud Disclosure: Data Mining, Forensic Accounting and Investigation Audit. TECHNOVATE: Journal of Information Technology and Strategic Innovation Management, 1(4), 177–184. https://doi.org/10.52432/technovate.1.4.2024.177-184

Paraswansa, A. D., & Utomo, D. C. (2024). Whistleblowing dan Korupsi Pada Sektor Publik: A Systematic Review. Jurnal Akademi Akuntansi, 7(1), 94–113. https://doi.org/10.22219/jaa.v7i1.31336

Prasetyo, S., & Dewayanto, T. (2024). Penerapan Machine Learning, Deep Learning, Dan Data Mining Dalam Deteksi Kecurangan Laporan Keuangan-A Systematic Literature Review. Diponegoro Journal of Accounting, 13(3), 1–12. http://ejournal-s1.undip.ac.id/index.php/accounting

Pribadi, L. A., & Dewayanto, T. (2025). Systematic Literature Review : Pengaruh Penerapan Artificial Intelligence Terhadap Efektivitas Sistem Informasi Akuntansi. Diponegoro Journal of Accounting, 14(3), 1–14.

Putra, D. R., Maulana, M. F., & Maulana, A. R. (2025). Literature Review : Modernisasi Akuntansi Sektor Publik dI Era Digital. Venture: Jurnal Kajian Ekonomi Dan Bisnis, 1(1), 10–16.

Rahmarta, V., Nirwana, & Syamsuddin. (2024). Strategi Pencegahan Fraud dalam Pemilihan Penyedia Jasa Konstruksi : Pendekatan Tinjauan Literatur Sistematik. J-CEKI : Jurnal Cendekia Ilmiah, 3(5), 4444–4454.

Rahmarta, V., Pontoh, G. T., & Said, D. (2024). Kekuatan Organisasional Dan Sistem Dalam Pencegahan Fraud: Suatu Tinjauan System Literature Review. Substansi: Sumber Artikel Akuntansi Auditing Dan Keuangan Vokasi, 8(1), 28–43. https://doi.org/10.36733/jia.v2i1.9046

Simanjuntak, R. B., & Mare, R. N. J. (2025). Analisis faktor yang memengaruhi kemampuan auditor dalam mendeteksi kecurangan : Kajian literatur sistematis. Journal of Accounting and Digital Finance, 5(2), 159–167.

Syahronny, M. R., & Dewayanto, T. (2024). Penerapan Teknologi Artificial Intelligence Dan Blockchain Dalam Mendeteksi Fraud Pada Proses Audit: Systematic Literature Review. Diponegoro Journal of Accounting, 13(3), 1–14. http://ejournal-s1.undip.ac.id/index.php/accounting

Tito, J. S., & Siregar, K. N. (2024). Faktor Pemicu dan Penghambat Fraud dalam Program Jaminan Kesehatan Nasional dan Strategi Pencegahannya: Sebuah Scoping Review. Jurnal Ekonomi Kesehatan Indonesia, 9(2). https://doi.org/10.7454/eki.v9i2.1124

Downloads

Published

2025-10-20

How to Cite

The use of Artificial Intelligence (AI) in Fraud Detection by Government Auditors: A Systematic Literature Review. (2025). International Conference on Multidisciplinary Studies Integrating Entrepreneurial Strategies and Digital Transformation, 1(1), 1-13. https://ejournal.unisbablitar.ac.id/index.php/icms/article/view/4965

Similar Articles

1-10 of 36

You may also start an advanced similarity search for this article.