Prediction of The Number of Pulmonary Tuberculosis Disease Using The Moving Average Forecasting Method And Time Series Decomposition
Abstract
Abstract: Indonesia is the third country with the largest number of deaths due to pulmonary tuberculosis infection. In order to suppress the spread of tuberculosis in Indonesia, in 2021 the government launched a tuberculosis control program which aims to prevent and reduce the spread. One effort to assess whether the program that has been implemented is operating well or not is to forecast the incidence of pulmonary tuberculosis. This research aims to predict the incidence of pulmonary tuberculosis to provide useful information for health workers and related parties in efforts to prevent and control pulmonary tuberculosis at Hospital X, Malang City in 2024. The method that will be used to predict the number of tuberculosis sufferers is a moving average. and time series decomposition. The multipicative decomposition method produces the smallest MAPE, namely 15.37%, which is in the good category compared to additive and moving average decomposition. In 2022 and 2023 there will be a significant spike in pulmonary tuberculosis cases at Hospital X Malang City and men have a higher risk factor than women. Most cases of pulmonary tuberculosis infection occur in the elderly (46-65 years) and adults (26-45 years) age groups.
Downloads
References
[2] S. Andayani, (2020), "Rediksi Kejadian Penyakit Tuberkulosis Paru Berdasarkan Jenis Kelamin," Jurnal Keperawatan Muhammadiyah Bengkulu, vol. 8, no. 2, pp. 135-140.
[3] T. Maretanata Pujianti, D. Damayant and F. Erawantini, (2014), "Perencanaan Kebutuhan Tempat Tidur Di Rumah Sakit Paru Jember Tahun 2013-2015," Jurnal Manajemen Informasi Kesehatan Indonesia, vol. 2, no. 1, pp. 61-67.
[4] H. A. Susanto, A. Sakka and L. Tina, (2016), "Prediksi Kejadian Penyakit Tb Paru Bta Positif Di Kota Kendari Tahun 2016-2020," JIM Kesmas: Jurnal Ilmiah Mahasiswa Kesehatan Masyarakat, vol. 1, no. 2, pp. 1-13.
[5] R. Rachman, (2018), "Penerapan Metode Smoothing pada Peramalan Produksi Industri Garment," Jurnal Informatika, vol. 5, no. 1, pp. 211-220.
[6] S. Yuni, M. W. Talakua and Y. A. Lesnussa, (2015), "Peramalan Jumlah Pengunjung Perpustakaan Universitas Pattimura Ambon Menggunakan Metode Dekomposisi," Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 9, no. 1, pp. 41 - 50.
[7] M. Agustina Making, Y. Kristiani Banhae, M. Yoani Vivi Bita Aty, Y. Mau, P. Selasa and Israfil, (2023), "Analisa Faktor Pengetahuan Dan Sikap Dengan Perilaku Pencegahan TB Paru Pada Kontak Serumah Selama Era New Normal Covid 19," Jurnal Penelitian Perawat Profesional, vol. 5, no. 1, pp. 43-50.
[8] Kementerian, "Peraturan Menteri Kesehatan Republik Indonesia Nomor 67," Kementerian, Jakarta, 2016.
[9] G. Ardesfira, H. Fitriah Zedha, . I. Fazana, J. Rahmadhiyanti, S. Rahima and S. Anwar, (2022), "Peramalan Nilai Tukar Rupiah Terhadap Dollar Amerika Dengan Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)," JAMBURA JOURNAL OF PROBABILITY AND STATISTICS, vol. 3, no. 2, pp. 71-84.
[10] E. S. Bilaffayza, Wahyudin and D. Herwanto, (2023), "Peramalan Permintaan Metode Moving Average dan Linier Regression dalam Memprediksi Produksi Produk Disc Brake K93 (Studi Kasus PT United Steel Center Indonesia)," JRSI: Jurnal Rekayasa Sistem dan Industri, vol. 10, no. 1, pp. 32-38.
[11] D. Anisya Ramdani and F. Nurul Azizah, (2019), "Analisis Perbandingan Peramalan Permintaan Pelumas Pt Xyz Dengan Metode Moving Average, Exponential Smoothing Dan Naive Method," in Seminar Nasional Official Statistics.
[12] M. A. Maricar, (2019), "Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ," Jurnal Sistem Dan Informatika (JSI), vol. 13, no. 2, pp. 36-45.
[13] Makkulau, R. Raya and S. Marlinda, (2017), "Aplikasi Metode Dekomposisi Pada Peramalan Jumlah Kelahiran," in Seminar Nasional Teknologi Terapan Berbasis Kearifan Lokal (SNT2BKL).
[14] S. Andayani, (2020), "Prediksi Kejadian Penyakit Tuberkulosis Paru Berdasarkan Jenis Kelamin," Jurnal Keperawatan Muhammadiyah Bengkulu, vol. 8, no. 2, pp. 135-140.
Copyright (c) 2024 Antivirus : Jurnal Ilmiah Teknik Informatika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License