Comparative Evaluation of Machine Learning Methods for Predicting Stock Price Changes

  • Galih Adhi Putratama Sebelas Maret University
  • Satya Maulana Fahreza Sebelas Maret University
  • Yudhistira Rakha Ramandhani Sebelas Maret University
Abstract views: 243 , PDF downloads: 358
Keywords: Stock price prediction, Random Forest, KNN, XGBoost, Windowing

Abstract

Forecasting price patterns in the stock market poses a complicated and intricate task due to numerous uncertain factors and variables that influence market value. This study conducts a comparative evaluation of three popular computational learning approaches, namely Random Forest, K-Nearest Neighbors (KNN), and XGBoost, for predicting stock price changes. The research findings indicate that Random Forest achieves higher ROC scores, while XGBoost exhibits superior performance in relation to accuracy, recall, and precision. The Windowing method is also applied to the dataset to address overfitting issues. This study offers valuable knowledge for professionals and researchers in the domain of stock price prediction, enabling them to choose the optimal model based on preferred evaluation metrics.

Downloads

Download data is not yet available.

References

[1]Raharjo, S. (2006). Kiat Membangun Aset Kekayaan. Jakarta, Indonesia, 2006.
[2]Meidiawati, K., & Mildawati, T. (Februari, 2016). Pengaruh size, growth, profitabilitas, struktur modal, kebijakan dividen terhadap nilai perusahaan. Jurnal Ilmu Dan Riset Akuntansi (JIRA). [Online]. 5(2). Tersedia : http://jurnalmahasiswa.stiesia.ac.id/index.php/jira/article/view/1536
[3]Devitra, J. (Juni, 2013). Kinerja Keuangan dan Efisiensi Terhadap Return Saham Perbankan di Bursa Efek Indonesia Periode 2007-2011. Jurnal Keuangan dan Perbankan. [Online]. 15(1), hal. 38–53. Tersedia : https://journal.perbanas.id/index.php/jkp/article/view/181
[4]Mariana, S, “Pengaruh Faktor Fundamental, Faktor Teknikal Dan Risiko Sistematik Terhadap Harga Saham Pada Sektor Perbankan Indeks InfoBank15 Yang Terdaftar Di Bursa Efek Indonesia Periode 2015-2018,” disertasi doctor, Program Studi Magister Akuntansi, Sekolah Pasca Sarjana Universitas Widyatama, Indonesia, 2020.
[5]Khaidem, L., Saha, S., & Dey, S. R. (April, 2016). Predicting the direction of stock market prices using random forest. [Online]. arXiv preprint arXiv:1605.00003. Tersedia : https://arxiv.org/abs/1605.00003
[6]Breiman, L. (Oktober, 2001). Random forests. Machine learning. [Online]. 45, hal. 5–32. Tersedia : https://link.springer.com/article/10.1023/a:1010933404324
[7]Cutler, D. R., Edwards Jr, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (November, 2007). Random forests for classification in ecology. Ecology. [Online]. 88(11), hal. 2783–2792. Tersedia : https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/07-0539.1
[8]Chen, T., dan Guestrin, C, “Xgboost: A scalable tree boosting system”. Dalam Proc. 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 2016, hal. 785-794.
[9]Cover, T., & Hart, P. (Januari, 1967). Nearest neighbour pattern classification. IEEE transactions on information theory. [Online]. 13(1), hal. 21–27. Tersedia : https://ieeexplore.ieee.org/document/1053964
[10]Wahyuni, R. E. (Juli, 2021). Optimasi Prediksi Inflasi dengan Neural Network Pada Tahap Windowing: Adakah Pengaruh Terhadap Window Size?. Jurnal Ilmiah “Technologia”. [Online]. 12(3). Hal. 176–181. Tersedia : https://ojs.uniska-bjm.ac.id/index.php/JIT/article/view/5181
[11]Fawcett, T. (Juni, 2006). An introduction to ROC analysis. Pattern Recognition Letters. [Online]. 27(8), hal. 861–874. Tersedia : https://www.sciencedirect.com/science/article/abs/pii/S016786550500303X

PlumX Metrics

Published
2024-05-12
How to Cite
[1]
Galih Adhi Putratama, Satya Maulana Fahreza, and Yudhistira Rakha Ramandhani, “Comparative Evaluation of Machine Learning Methods for Predicting Stock Price Changes”, antivirus, vol. 17, no. 2, pp. 278-285, May 2024.