SENTIMENT ANALYSIS OF PROGRAM MERDEKA BELAJAR – KAMPUS MERDEKA ON TWITTER USING SUPPORT VECTOR MACHINE

  • Ni'ma Kholila Universitas Islam Balitar
Abstract views: 669 , PDF downloads: 742
Keywords: Sentiment Analysis, Merdeka Belajar - Kampus Merdeka, Support Vector Machine, Twitter

Abstract

Merdeka Belajar - Kampus Merdeka Program as one of the public policies by the Ministry of Education, Culture, Research, and Technology, cannot be separated from public opinion. Opinions are divided into three categories, positive opinions, negative opinions, and neutral opinions. The public expresses opinions through various social media platforms. As a simple social media, Twitter actually has an influence on the process of forming and directing public opinion. Tweet data with the keyword Merdeka Belajar - Kampus Merdeka between August 2020 and February 2021, is used to conduct sentiment analysis to identify the direction of public opinion towards Merdeka Belajar - Kampus Merdeka Program. Sentiment analysis using Support Vector Machine can be applied to predict the direction of a person's sentiment towards the Program Merdeka Belajar – Kampus Merdeka, both positive and negative sentiments. Based on the test results, it can be concluded that the F-measure accuracy value for the positive class is 94.8% and the F-measure accuracy value for the negative class is 95%.

Downloads

Download data is not yet available.

References

Prodjo, W.A. (2020, Januari 25). 4 Alasan Nadiem Makarim Mengeluarkan kebijakan kampus Merdeka. Kompas Online. [Online]. Tersedia: https://edukasi.kompas.com/read/2020/01/25/20283891/4-alasan-nadiem-makarim-mengeluarkan-kebijakan-kampus-merdeka.

Irawan, P. (2017). Analisis Opini Publik tentang Kualitas Pelayanan Publik Pemerintah Kota Palembang dalam Rubrik “Lapor Mang Sripo” pada Surat Kabar Sriwijaya Post. [Online]. Tersedia: http://eprints.radenfatah.ac.id/869/1/PURNAMA%20IRAWAN%2012530064%20JURNALISTIK.pdf.

Zaenudin, A. (2018, Maret 21). Bagaimana Twitter Mempengaruhi Opini Publik dan Preferensi Politik. Tirto-id. [Online]. Tersedia: https://tirto.id/bagaimana-twitter-memengaruhi-opini-publik-dan-preferensi-politik-cGre.

Novantirani, A., Sabariah, M.K., Effendy, V., “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Dalam Kota dengan Metode Support Vector Machine,” dalam e-Proceeding of Engineering : Vol.2, No.1 April 2015, hal. 1177.

Dharmapatni, P.M.N., & Merawati, N.L.P. (September, 2020). Penerapan Algoritma Support Vector Machine Dalam Sentimen Analisis Terkait Kenaikan Tarif BPJS Kesehatan. Jurnal BITe. [Online]. Vol 2 No 2. Tersedia: https://journal.universitasbumigora.ac.id/index.php/bite/article/view/904.

Santosa, B. & Umam, A. (2018). Data Mining dan Big Data Analytics. Bantul, Yogyakarta: Penebar Media Pustaka.

DIKTI. (2020). Buku Panduan Merdeka Belajar – Kampus Merdeka. Jakarta: Direktorat Jendral Pendidikan Tinggi Kemdikbud RI.

Aditya, D.B. (2021, Oktober 30). Tantangan dan Harapan FIB dalam Mendukung Merdeka Belajar Kampus Merdeka. Unair News. [Online]. Tersedia: http://news.unair.ac.id/2021/10/30/tantangan-dan-harapan-fib-dalam-mendukung-merdeka-belajar-kampus-merdeka/

MonkeyLearn. (n.d.) Understanding TF-ID: A Simple Introduction. [Online]. Tersedia: https://monkeylearn.com/blog/what-is-tf-idf.

MonkeyLearn. (n.d.) Sentiment Analysis: the Definitive Guide. [Online]. Tersedia: https://monkeylearn.com/sentiment-analysis.

PlumX Metrics

Published
2021-12-20
How to Cite
[1]
N. Kholila, “SENTIMENT ANALYSIS OF PROGRAM MERDEKA BELAJAR – KAMPUS MERDEKA ON TWITTER USING SUPPORT VECTOR MACHINE”, antivirus, vol. 15, no. 2, pp. 252-261, Dec. 2021.