INTERAKSI TANAMAN PASCA INFEKSI GEMINIVURUS BERDASARKAN PERSPEKTIF MOLEKULER

  • Ifan candra Universitas Medan Area
  • Mr. fetro STIKIP BINA BANGSA MEULABOH, ACEH, INDONESIA
Abstract views: 898 , PDF downloads: 945
Keywords: Geminivirus, SAR, Interaksi Molekuler, Diagnosis

Abstract

Geminivirus merupakan virus fitopatogen destruktif yang memiliki spektrum luas. Infeksi dan severitas virus ini menyebabkan kerugian ekonomi yang signifikan di sektor pertanian dunia. Permasalahan utama yang dilaporkan adalah gejala-gejala serangan baru terlihat setelah skala tingkat kerusakan tertinggi, sehingga sulit untuk dikendalikan. Infeksi awal virus ini pada umumnya memblokade tranduksi hormone, memanipulasi sistem pertahanan tanaman (Sistemic Acquired Resistance/SAR), mempengaruhi mekanisme apoptosis (Program kematian Sel), abnomalitas sistem metilasi pada tanaman. Pada review ini akan dibahas sistem ketahanan tanaman sistemik maupun lokal secara molekuler, interaksi protein-protein yang terlibat langsung pasca penetrasi geminivirus pada tanaman. Selain itu juga akan mendiskusikan strategi-strategi diagnosis potensial eksistensi virus pada tanaman. Strategi ini dapat berupa Diagnosis berbasis DNA melalui pengembangan konsep dari metode Polymerase Chain Reaction (PCR).  

Downloads

Download data is not yet available.

References

[1] L. Hanley-Bowdoin, E. R. Bejarano, D. Robertson, and S. Mansoor, “Geminiviruses: Masters at redirecting and reprogramming plant processes,” Nature Reviews Microbiology. 2013, doi: 10.1038/nrmicro3117.
[2] M. R. Rojas et al., “World Management of Geminiviruses,” Annual Review of Phytopathology. 2018, doi: 10.1146/annurev-phyto-080615-100327.
[3] F. García-Arenal and F. M. Zerbini, “Life on the Edge: Geminiviruses at the Interface between Crops and Wild Plant Hosts,” Annu. Rev. Virol., vol. 6, pp. 411–433, 2019, doi: 10.1146/annurev-virology-092818-015536.
[4] J. Navas-Castillo, E. Fiallo-Olivé, and S. Sánchez-Campos, “Emerging virus diseases transmitted by whiteflies,” Annu. Rev. Phytopathol., 2011, doi: 10.1146/annurev-phyto-072910-095235.
[5] T. A. Melgarejo, T. Kon, M. R. Rojas, L. Paz-Carrasco, F. M. Zerbini, and R. L. Gilbertson, “Characterization of a New World Monopartite Begomovirus Causing Leaf Curl Disease of Tomato in Ecuador and Peru Reveals a New Direction in Geminivirus Evolution,” J. Virol., vol. 87, no. 10, pp. 5397–5413, 2013, doi: 10.1128/jvi.00234-13.
[6] G. W. Harkins et al., “Experimental evidence indicating that mastreviruses probably did not co-diverge with their hosts,” Virol. J., 2009, doi: 10.1186/1743-422X-6-104.
[7] F. A. Gorter, M. M. G. Aarts, B. J. Zwaan, and J. A. G. M. de Visser, “Dynamics of adaptation in experimental yeast populations exposed to gradual and abrupt change in heavy metal concentration,” Am. Nat., 2015, doi: 10.1086/684104.
[8] I. aulia Candra et al., “In Vitro Interaction between Geminivirus Replicase Protein and the Npr1 Gene Promoter from Chilli Pepper (Capsicum annuum),” 2019. [Online]. Available: http://milou.science.uu.nl/services/3DD-ART/.
[9] T. E. Nash, M. B. Dallas, M. I. Reyes, G. K. Buhrman, J. T. Ascencio-Ibanez, and L. Hanley-Bowdoin, “Functional Analysis of a Novel Motif Conserved across Geminivirus Rep Proteins,” J. Virol., 2011, doi: 10.1128/jvi.02143-10.
[10] R. W. Briddon, M. S. Pinner, J. Stanley, and P. G. Markham, “Geminivirus coat protein gene replacement alters insect specificity,” Virology, 1990, doi: 10.1016/0042-6822(90)90462-Z.
[11] P. Bernardo et al., “Identification and characterisation of a highly divergent geminivirus: Evolutionary and taxonomic implications,” Virus Res., vol. 177, no. 1, pp. 35–45, 2013, doi: 10.1016/j.virusres.2013.07.006.
[12] R. Y. Jumsu Trisno and Jamsari, “CALLI INDUCTION OF SOME CHILI PEPPER (Capsicum annuum L.) GENOTYPES AS MATERIAL FOR GENETIC TRANSFORMATION,” Int. J. Agric. Sci., 2017, doi: 10.25077/ijasc.1.1.75-80.2015.
[13] K. M. Pajerowska-Mukhtar, D. K. Emerine, and M. S. Mukhtar, “Tell me more: Roles of NPRs in plant immunity,” Trends in Plant Science. 2013, doi: 10.1016/j.tplants.2013.04.004.
[14] Z. Q. Fu and X. Dong, “Systemic acquired resistance: Turning local infection into global defense,” Annual Review of Plant Biology. 2013, doi: 10.1146/annurev-arplant-042811-105606.
[15] M. S. Mukhtar, M. T. Nishimura, and J. Dangl, “NPR1 in Plant Defense: It’s Not over ’til It’s Turned over,” Cell. 2009, doi: 10.1016/j.cell.2009.05.010.
[16] M. Fadli, D. H. Tjong, L. Syukriani, A. Asben, J. Jamsari, and J. Jamsari, “Molecular interaction of replicase protein geminivirus from Pesisir Selatan isolate with Ankyrin-NPR1 domain,” 2020, doi: 10.1088/1755-1315/497/1/012024.
[17] Z. Mou, W. Fan, and X. Dong, “Inducers of plant systemic acquired resistance Regulate NPR1 function through redox changes,” Cell, 2003, doi: 10.1016/S0092-8674(03)00429-X.
[18] R. R. Weigel, U. M. Pfitzner, and C. Gatz, “Interaction of NIMIN1 with NPR1 modulates PR gene expression in Arabidopsis,” Plant Cell, 2005, doi: 10.1105/tpc.104.027441.
[19] Jamsari, L. Syukriani, H. P. Utami, F. Herberg, W. Nellen, and I. Ferita, “Injection technique could as a new promising method for artificial infection of geminivirus particles in chili pepper (Capsicum annuum L.),” Asian J. Agric. Res., 2015, doi: 10.3923/ajar.2015.23.32.
[20] H. Jeske, M. Lütgemeier, and W. Preiß, “DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus,” EMBO J., 2001, doi: 10.1093/emboj/20.21.6158.
[21] K. Saunders, A. Lucy, and J. Stanley, “RNA-primed complementary-sense DNA synthesis of the geminivirus African cassava mosaic virus,” Nucleic Acids Res., 1992, doi: 10.1093/nar/20.23.6311.
[22] N. K. Kushwaha, M. Bhardwaj, and S. Chakraborty, “The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome,” PLoS Pathog., 2017, doi: 10.1371/journal.ppat.1006587.
[23] P. Raja, B. C. Sanville, R. C. Buchmann, and D. M. Bisaro, “Viral Genome Methylation as an Epigenetic Defense against Geminiviruses,” J. Virol., 2008, doi: 10.1128/jvi.00719-08.
[24] J. T. Ascencio-Ibáñez et al., “Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection,” Plant Physiol., 2008, doi: 10.1104/pp.108.121038.
[25] E. Noris and M. Catoni, “Chapter 13 - Role of methylation during geminivirus infection,” P. Poltronieri and Y. B. T.-A. P. B. for I. R. to B. S. Hong, Eds. Academic Press, 2020, pp. 291–305.
[26] J. Trisno, S. H. Hidayat, J. Jamsari, T. Habazar, and I. Manti, “Identifikasi Molekuler Begomovirus Penyebab Penyakit Kuning Keriting pada Tanaman Cabai (Capsicum annum L.) di Sumatera Barat,” J. Natur Indones., 2012, doi: 10.31258/jnat.13.1.41-46.
[27] G. Silva, J. Oyekanmi, C. K. Nkere, M. Bömer, P. L. Kumar, and S. E. Seal, “Rapid detection of potyviruses from crude plant extracts,” Anal. Biochem., 2018, doi: 10.1016/j.ab.2018.01.019.
[28] G. Silva, M. Bömer, C. Nkere, P. Lava Kumar, and S. E. Seal, “Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification,” J. Virol. Methods, 2015, doi: 10.1016/j.jviromet.2015.06.011.
[29] H. Y. Lau and J. R. Botella, “Advanced DNA-based point-of-care diagnostic methods for plant diseases detection,” Frontiers in Plant Science. 2017, doi: 10.3389/fpls.2017.02016.
[30] S. Fukuta et al., “Development of loop-mediated isothermal amplification assay for the detection of Pythium myriotylum,” Lett. Appl. Microbiol., 2014, doi: 10.1111/lam.12244.
[31] M. Vincent, Y. Xu, and H. Kong, “Helicase-dependent isothermal DNA amplification,” EMBO Rep., 2004, doi: 10.1038/sj.embor.7400200.
[32] O. Piepenburg, C. H. Williams, D. L. Stemple, and N. A. Armes, “DNA detection using recombination proteins,” PLoS Biol., 2006, doi: 10.1371/journal.pbio.0040204.

PlumX Metrics

Published
2020-11-12
How to Cite
candra, I., & Syamsu, F. (2020). INTERAKSI TANAMAN PASCA INFEKSI GEMINIVURUS BERDASARKAN PERSPEKTIF MOLEKULER. VIABEL: Jurnal Ilmiah Ilmu-Ilmu Pertanian, 14(2), 34-41. https://doi.org/10.35457/viabel.v14i2.1183