ANALYSIS OF ROAD DAMAGE DETECTION USING ORTHOPHOTO MAP FROM UNMANNED AERIAL VEHICLE (UAV-PHOTOGRAMMETRY)
Abstract
Survey of road damage data can be conducted by the direct survey method or manual inspection, but that mothod is quite long and requires a lot of employers, so it is not effective and efficient. This research focuses on the inspection of road damage using drone technology by taking aerial photos using the UAV-Photogrammetry method. Aerial photography was carried out along the roads in the study area. The partial aerial photos are processed using image processing software to become the orthophoto map and digital elevation model (DEM). Road damage data identification was carried out by measuring the dimensions (length, width, and depth) from the orthophoto map and DEM by the visual interpretation method. The research results show that the types of road damage identified from the orthophoto map and DEM in the study area are potholes, block cracks, continuous cracks, and patches. The accuracy of the dimensions of road damage produced from the orthophoto map and DEM compared to the dimensions of road damage measured directly has different values for horizontal of 0.001 - 0.088 m and vertical of 0.010 - 0.019 m, RMSE values range from 0.005 to 0.058. The results of the t-test statistical test show that there is no significant difference between measurements of road damage dimensions from the orthophoto map and DEM and the results of direct measurements.
References
H. Eisenbeiß, “UAV Photogrammetry,” 2009.
D. A. Roberts and M. Herold, “Mapping asphalt road conditions with hyperspectral remote sensing,” 2005. [Online]. Available: http://www.ncgia.ucsb.edu/ncrst/,
P. L. Y. Tiong, M. Mustaffar, and M. B. Rosli, “Road surface assessment of pothole severity by close range digital photogrammetry method PTSF on Two-lane Highways View project Sustainable Performance of Formwork System in Malaysia View project,” 2012, doi: 10.5829/idosi.wasj.2012.19.06.3353.
G. Leonardi, V. Barrile, R. Palamara, F. Suraci, and G. Candela, “3D mapping of pavement distresses using an Unmanned Aerial Vehicle (UAV) system,” in Smart Innovation, Systems and Technologies, Springer Science and Business Media Deutschland GmbH, 2019, pp. 164–171. doi: 10.1007/978-3-319-92102-0_18.
A. Ragnoli, M. R. De Blasiis, and A. Di Benedetto, “Pavement distress detection methods: A review,” Infrastructures, vol. 3, no. 4. MDPI Multidisciplinary Digital Publishing Institute, Dec. 19, 2018. doi: 10.3390/infrastructures3040058.
C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and P. Fieguth, “A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure,” Advanced Engineering Informatics, vol. 29, no. 2, pp. 196–210, Apr. 2015, doi: 10.1016/j.aei.2015.01.008.
S. C. Radopoulou, I. Brilakis, K. Doycheva, and C. Koch, “A Framework for Automated Pavement Condition Monitoring,” in Construction Research Congress 2016: Old and New Construction Technologies Converge in Historic San Juan - Proceedings of the 2016 Construction Research Congress, CRC 2016, American Society of Civil Engineers (ASCE), 2016, pp. 770–779. doi: 10.1061/9780784479827.078.
E. Schnebele, B. F. Tanyu, G. Cervone, and N. Waters, “Review of remote sensing methodologies for pavement management and assessment,” European Transport Research Review, vol. 7, no. 2, Jun. 2015, doi: 10.1007/s12544-015-0156-6.
I. Mandaya and Harintaka, “Pemanfaatan Teknologi UAV (Unmanned Aerial Vehicle) Untuk Identifikasi Dan Klasifikasi - Jenis Kerusakan Jalan,” Rekayasa Sipil, vol. 14, no. 3, 2020, Accessed: Sep. 23, 2023. [Online]. Available: https://rekayasasipil.ub.ac.id/index.php/rs/article/view/698
H. Svatonova, “Analysis of visual interpretation of satellite data,” in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, International Society for Photogrammetry and Remote Sensing, 2016, pp. 675–681. doi: 10.5194/isprsarchives-XLI-B2-675-2016.
M. Zeybek, S. Bicici, T. Uzaktan Algılama ve CBS Dergisi, and S. Biçici, “Road Distress Measurements Using UAV Application of LiDAR Systems in Forest Ecosystems View project Road Surface Monitoring with UAV View project Turkish Journal of Remote Sensing and GIS Road Distress Measurements Using UAV İHA Kullanarak Yol Bozukluk Ölçmeleri,” 2020.
Copyright (c) 2024 Jurnal Qua Teknika
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Copyright on any article is retained by the author(s).
- Author grant the journal, right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
- The article and any associated published material is distributed under the Creative Commons Attribution-ShareAlike 4.0 International License