Critical Discourse Analysis of the Free Nutritious Meal Policy: A Study of Discourse on Social Media X
Keywords:
Free Nutritious Meal; Critical Discourse Analysis; Public Discourse; Social Media; Policy LegitimacyAbstract
The Free Nutritious Meal (Makan Bergizi Gratis/MBG) policy is one of the Indonesian government’s flagship programs aimed at improving students’ nutritional intake and reducing food access inequality. However, since its early implementation, the program has generated diverse responses on social media platform X (Twitter), ranging from support and optimism to criticism and politicized debates. This study adopts a mixed-methods approach, combining big data analytics using NoLimit Indonesia with qualitative inquiry through Norman Fairclough’s Critical Discourse Analysis (CDA). Data were collected from public conversations between February 1–28, 2025, using the keywords “Makan Bergizi Gratis,” “MBG,” and “free lunch.” The findings reveal three main orientations in public discourse: positive sentiment, which highlights community participation, social solidarity, and long-term human development goals; negative sentiment, which criticizes weak governance, lack of transparency, and suspicions of political populism; and neutral sentiment, expressed through factual reporting, reflection, and concerns about policy priorities. CDA demonstrates that MBG is not merely understood as a technical nutrition policy, but also as a contested arena of ideology, meaning, and political legitimacy. Based on these findings, the study recommends strengthening transparency and accountability, ensuring community participation, and implementing evidence-based communication strategies to reduce polarization. In doing so, MBG can achieve broader legitimacy as an accountable, participatory, and socially relevant policy.
References
Akromi, E. N. A. Al, & Santika, R. (2024). The Role of Language in Constructing Political Image on Social Media: A Critical Discourse Analysis. Jurnal Multidisiplin Indonesia (JMI), 3(3), 3. https://doi.org/https://doi.org/10.58344/jmi.v3i3.2259
Amara, S., Novriyenni, & Khadapi, M. (2025). Analisis Sentimen Masyarakat terhadap Program Makan Siang Gratis di Indonesia Tahun 2024 Menggunakan Long Short-Term Memory (LSTM). Merkurius : Jurnal Riset Sistem Informasi Dan Teknik Informatika, 3(4).
Andryani, R., Negara, E. S., & Triadi, D. (2019). Social Media Analytics: Data Utilization of Social Media for Research. Journal of Information Systems and Informatics, 1(2), 193–205. https://doi.org/10.33557/journalisi.v1i2.23
Asro, & Sudaryono. (2024). Sebuah Analisis Sentimen Terhadap Transformasi Program Makan Siang Gratis menjadi Makan Bergizi Gratis di YouTube Menggunakan Logistik Regression. Jurnal ICT: Information Communication & Technology, 24(1).
Ati, G. R., & Prasetyaningrum, P. T. (2025). Analysis of Community Sentiment Towards Free Nutrition Meal Programs on Twitter Using Naïve Bayes, Support Vector Machine, K-Nearest Neighbors, and Ensemble Methods. Journal of Information Systems and Informatics, 7(2), 1443–1460. https://doi.org/10.51519/journalisi.v7i2.1098
Attaulah, D. T., & Soyusiawaty, D. (2025). Analisis Sentimen Program Makan Siang Gratis di Twitter/X menggunakan Metode BI-LSTM. Edumatic: Jurnal Pendidikan Informatika, 9(1), 294–303. https://doi.org/10.29408/edumatic.v9i1.29725
Bayu Ade, P., Tri, M., Wida, M., & Nicolas Kevin, S. (2025). Digital Discourse Transformation: Analysis of Neutral Discussion Escalation into SARA Debates on Indonesian Social Media Platforms. LITERACY : International Scientific Journals of Social, Education, Humanities, 4(2), 289–301. https://doi.org/10.56910/literacy.v4i2.2464
Bazzaz Abkenar, S., Haghi Kashani, M., Mahdipour, E., & Jameii, S. M. (2021). Big data analytics meets social media: A systematic review of techniques, open issues, and future directions. Telematics and Informatics, 57, 101517. https://doi.org/10.1016/j.tele.2020.101517
Castells, M. (2009). Communication Power. Oxford University Press.
Du, X., Feng, F., & Lv, W. (2022). Bibliometric Overview of Organizational Legitimacy Research. Sage Open, 12(2). https://doi.org/10.1177/21582440221099524
Fajar Maulana, H., & Arroyan, F. (2025). Proceeding Jogjakarta Communication Conference Narrative Fractures in Policy Communication: Framing and Public Sentiment on Indonesia’s Free Nutritious Meals Program. Proceedings of Jogjakarta Communication Conference (JCC), 3(1), 309–321. https://jcc-indonesia.id/
Fauziah, R. (2025). ANALISIS JARINGAN KOMUNIKASI (SOCIAL NETWORK ANALYSIS) PROGRAM MBG INDONESIA. ANALISIS JARINGAN KOMUNIKASI (SOCIAL NETWORK ANALYSIS) PROGRAM MBG INDONESIA, 8(3). https://doi.org/DOI:https://doi.org/10.54314/jssr.v8i3.4007
Hanin, A. S., & Maryam, M. (2025). Sentiment Analysis of Twitter Towards the Free Lunch Program Using the C4.5 Algorithm. International Journal of Advances in Data and Information Systems, 6(1), 31–45. https://doi.org/10.59395/ijadis.v6i1.1357
Khairul Syafuddin. (2025). Dynamics of Environmental Issues in Indonesia: Critical Discourse Analysis of the #perubahaniklim Digital Campaign Through TikTok. Mediakita, 9(1), 1–20. https://doi.org/10.30762/mediakita.v9i1.2752
Kiwi, D., Khanagha, S., & Alexiou, A. (2025). Understanding the Role of Legitimacy During Strategic Change in Public Organizations: A Review and Research Agenda. Public Performance & Management Review, 1–39. https://doi.org/10.1080/15309576.2025.2476572
Nip, J. Y. M., & Berthelier, B. (2024). Social Media Sentiment Analysis. Encyclopedia, 4(4), 1590–1598. https://doi.org/10.3390/encyclopedia4040104
Saputra, A., Firdaus, M. I., Wahyudi, R., Mohdo, L., Gunawan, M. E., Encep, M., & Khaira, M. (2022). Big Data. Karimah Tauhid, 1(6). https://doi.org/https://doi.org/10.30997/karimahtauhid.v1i6.7664
Suchman, M. C. (1995). Managing Legitimacy: Strategic and Institutional Approaches. The Academy of Management Review, 20(3), 571. https://doi.org/10.2307/258788
Suhaeni, C., Mualifah, L. N. A., & Wijayanto, H. (2025). LDA Topic Modeling Analysis of Public Discourse on Indonesia’s Free Nutritious Meals Program (MBG). IJID (International Journal on Informatics for Development), 14(1).
Umbu Zogara, L. (2025). Eksplorasi Social Media Mining Dalam Analitik Big Data: Metode Dan Implementasi. Jurnal Sistem Informasi Dan Teknologi (SINTEK), 5(2), 194–199. https://doi.org/10.56995/sintek.v5i2.168
Vebrian, Y. Z., & Kustiyono. (2025). a Sentiment Analysis of Free Meal Plans on Social Media using Naïve Bayes Algorithms. Jurnal Inovtek Polbeng , 10(1). https://doi.org/https://doi.org/10.35314/3m2fcz69
Waluyo, I. G., & Juwono. (2023). Sentiment Analysis of Negative Comments on Social Media Using Long Short-Term Memory (LSTM) Method With TensorFlow Framework. International Journal of Integrative Sciences, 2(7), 1015–1030. https://doi.org/10.55927/ijis.v2i7.4990
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Bayu Aulia Priyantomo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
