Critical Discourse Analysis of the Free Nutritious Meal Policy: A Study of Discourse on Social Media X

Authors

  • Bayu Aulia Priyantomo Universitas Wijaya Putra

Keywords:

Free Nutritious Meal; Critical Discourse Analysis; Public Discourse; Social Media; Policy Legitimacy

Abstract

The Free Nutritious Meal (Makan Bergizi Gratis/MBG) policy is one of the Indonesian government’s flagship programs aimed at improving students’ nutritional intake and reducing food access inequality. However, since its early implementation, the program has generated diverse responses on social media platform X (Twitter), ranging from support and optimism to criticism and politicized debates. This study adopts a mixed-methods approach, combining big data analytics using NoLimit Indonesia with qualitative inquiry through Norman Fairclough’s Critical Discourse Analysis (CDA). Data were collected from public conversations between February 1–28, 2025, using the keywords “Makan Bergizi Gratis,” “MBG,” and “free lunch.” The findings reveal three main orientations in public discourse: positive sentiment, which highlights community participation, social solidarity, and long-term human development goals; negative sentiment, which criticizes weak governance, lack of transparency, and suspicions of political populism; and neutral sentiment, expressed through factual reporting, reflection, and concerns about policy priorities. CDA demonstrates that MBG is not merely understood as a technical nutrition policy, but also as a contested arena of ideology, meaning, and political legitimacy. Based on these findings, the study recommends strengthening transparency and accountability, ensuring community participation, and implementing evidence-based communication strategies to reduce polarization. In doing so, MBG can achieve broader legitimacy as an accountable, participatory, and socially relevant policy.

References

Akromi, E. N. A. Al, & Santika, R. (2024). The Role of Language in Constructing Political Image on Social Media: A Critical Discourse Analysis. Jurnal Multidisiplin Indonesia (JMI), 3(3), 3. https://doi.org/https://doi.org/10.58344/jmi.v3i3.2259

Amara, S., Novriyenni, & Khadapi, M. (2025). Analisis Sentimen Masyarakat terhadap Program Makan Siang Gratis di Indonesia Tahun 2024 Menggunakan Long Short-Term Memory (LSTM). Merkurius : Jurnal Riset Sistem Informasi Dan Teknik Informatika, 3(4).

Andryani, R., Negara, E. S., & Triadi, D. (2019). Social Media Analytics: Data Utilization of Social Media for Research. Journal of Information Systems and Informatics, 1(2), 193–205. https://doi.org/10.33557/journalisi.v1i2.23

Asro, & Sudaryono. (2024). Sebuah Analisis Sentimen Terhadap Transformasi Program Makan Siang Gratis menjadi Makan Bergizi Gratis di YouTube Menggunakan Logistik Regression. Jurnal ICT: Information Communication & Technology, 24(1).

Ati, G. R., & Prasetyaningrum, P. T. (2025). Analysis of Community Sentiment Towards Free Nutrition Meal Programs on Twitter Using Naïve Bayes, Support Vector Machine, K-Nearest Neighbors, and Ensemble Methods. Journal of Information Systems and Informatics, 7(2), 1443–1460. https://doi.org/10.51519/journalisi.v7i2.1098

Attaulah, D. T., & Soyusiawaty, D. (2025). Analisis Sentimen Program Makan Siang Gratis di Twitter/X menggunakan Metode BI-LSTM. Edumatic: Jurnal Pendidikan Informatika, 9(1), 294–303. https://doi.org/10.29408/edumatic.v9i1.29725

Bayu Ade, P., Tri, M., Wida, M., & Nicolas Kevin, S. (2025). Digital Discourse Transformation: Analysis of Neutral Discussion Escalation into SARA Debates on Indonesian Social Media Platforms. LITERACY : International Scientific Journals of Social, Education, Humanities, 4(2), 289–301. https://doi.org/10.56910/literacy.v4i2.2464

Bazzaz Abkenar, S., Haghi Kashani, M., Mahdipour, E., & Jameii, S. M. (2021). Big data analytics meets social media: A systematic review of techniques, open issues, and future directions. Telematics and Informatics, 57, 101517. https://doi.org/10.1016/j.tele.2020.101517

Castells, M. (2009). Communication Power. Oxford University Press.

Du, X., Feng, F., & Lv, W. (2022). Bibliometric Overview of Organizational Legitimacy Research. Sage Open, 12(2). https://doi.org/10.1177/21582440221099524

Fajar Maulana, H., & Arroyan, F. (2025). Proceeding Jogjakarta Communication Conference Narrative Fractures in Policy Communication: Framing and Public Sentiment on Indonesia’s Free Nutritious Meals Program. Proceedings of Jogjakarta Communication Conference (JCC), 3(1), 309–321. https://jcc-indonesia.id/

Fauziah, R. (2025). ANALISIS JARINGAN KOMUNIKASI (SOCIAL NETWORK ANALYSIS) PROGRAM MBG INDONESIA. ANALISIS JARINGAN KOMUNIKASI (SOCIAL NETWORK ANALYSIS) PROGRAM MBG INDONESIA, 8(3). https://doi.org/DOI:https://doi.org/10.54314/jssr.v8i3.4007

Hanin, A. S., & Maryam, M. (2025). Sentiment Analysis of Twitter Towards the Free Lunch Program Using the C4.5 Algorithm. International Journal of Advances in Data and Information Systems, 6(1), 31–45. https://doi.org/10.59395/ijadis.v6i1.1357

Khairul Syafuddin. (2025). Dynamics of Environmental Issues in Indonesia: Critical Discourse Analysis of the #perubahaniklim Digital Campaign Through TikTok. Mediakita, 9(1), 1–20. https://doi.org/10.30762/mediakita.v9i1.2752

Kiwi, D., Khanagha, S., & Alexiou, A. (2025). Understanding the Role of Legitimacy During Strategic Change in Public Organizations: A Review and Research Agenda. Public Performance & Management Review, 1–39. https://doi.org/10.1080/15309576.2025.2476572

Nip, J. Y. M., & Berthelier, B. (2024). Social Media Sentiment Analysis. Encyclopedia, 4(4), 1590–1598. https://doi.org/10.3390/encyclopedia4040104

Saputra, A., Firdaus, M. I., Wahyudi, R., Mohdo, L., Gunawan, M. E., Encep, M., & Khaira, M. (2022). Big Data. Karimah Tauhid, 1(6). https://doi.org/https://doi.org/10.30997/karimahtauhid.v1i6.7664

Suchman, M. C. (1995). Managing Legitimacy: Strategic and Institutional Approaches. The Academy of Management Review, 20(3), 571. https://doi.org/10.2307/258788

Suhaeni, C., Mualifah, L. N. A., & Wijayanto, H. (2025). LDA Topic Modeling Analysis of Public Discourse on Indonesia’s Free Nutritious Meals Program (MBG). IJID (International Journal on Informatics for Development), 14(1).

Umbu Zogara, L. (2025). Eksplorasi Social Media Mining Dalam Analitik Big Data: Metode Dan Implementasi. Jurnal Sistem Informasi Dan Teknologi (SINTEK), 5(2), 194–199. https://doi.org/10.56995/sintek.v5i2.168

Vebrian, Y. Z., & Kustiyono. (2025). a Sentiment Analysis of Free Meal Plans on Social Media using Naïve Bayes Algorithms. Jurnal Inovtek Polbeng , 10(1). https://doi.org/https://doi.org/10.35314/3m2fcz69

Waluyo, I. G., & Juwono. (2023). Sentiment Analysis of Negative Comments on Social Media Using Long Short-Term Memory (LSTM) Method With TensorFlow Framework. International Journal of Integrative Sciences, 2(7), 1015–1030. https://doi.org/10.55927/ijis.v2i7.4990

Downloads

Published

2025-10-21

How to Cite

Critical Discourse Analysis of the Free Nutritious Meal Policy: A Study of Discourse on Social Media X. (2025). International Conference on Multidisciplinary Studies Integrating Entrepreneurial Strategies and Digital Transformation, 1(1), 459-482. https://ejournal.unisbablitar.ac.id/index.php/icms/article/view/5144

Similar Articles

11-20 of 53

You may also start an advanced similarity search for this article.