IMPLEMENTATION OF MULTI-CLASS GRADIENT BOOSTING TO CLASSIFY ANIMAL SPECIES IN ZOOS

IMPLEMENTASI MULTI-CLASS GRADIENT BOOSTING UNTUK MENGKLASIFIKASIKAN JENIS HEWAN PADA KEBUN BINATANG

  • Sri Diantika Universitas Bina Sarana Informatika
  • Hiya Nalatissifa Universitas Bina Sarana Informatika
  • Riki Supriyadi Universitas Nusa Mandiri
  • Nurlaelatul Maulidah Universitas Bina Sarana Informatika
  • Ahmad Fauzi Universitas Bina Sarana Informatika
Abstract views: 447 , PDF downloads: 507
Keywords: Klasifikasi, Jenis Hewan, Multi-class, Gradient Boosting, Algortitma

Abstract

Animals are one of the living things that have various types. Grouping types of animals based on similarities and differences in characteristics owned is one of the important activities carried out To make it easier to compare, recognize, study certain types of animals and be able to find out kinship relationships between animals, So if a new type of animal is found that does not yet have a name, it will be easier for us to give a name to the animal based on the type and based on the group. In research on the classification of animal species in zoos that have multi-class, the best classification is obtained by applying gradient boosting parameters with n_estimators of 50, max_depth 3, sub-sample of 1.0, learning rate of 0.1, and using criterion friedman Mse. And by implementing Split validation or division between training data by 80% for training data and 20% for testing data. The results stated that the proposed model was better than some other models that had also been tested with an accuracy value of 93.75%, recal of 94%, precision of 96% and MSE to measure the average magnitude of error in a series of classifications of 12.5%, the smaller the MSE value, the better it would be in classifying.

Downloads

Download data is not yet available.

References

[1] A. P. Anugrah and A. Karya, “Produk Observasi Interaktif untuk Sarana Introduksi Hewan di Kebun Binatang,” J. Tingkat Sarj. Seni Rupa dan Desain, vol. 3, no. 1, pp. 376–382, 2014, [Online]. Available: http://garuda.ristekbrin.go.id/documents/detail/270103
[2] N. I. Widiastuti, E. Rainarli, and K. E. Dewi, “Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen,” J. Infotel, vol. 9, no. 4, p. 416, 2017, doi: 10.20895/infotel.v9i4.312.
[3] K. Nugroho and S. Murdowo, “Klasifikasi Jenis Hewan Pada Kebun Binatang Dengan Menggunakan Metode Deep Neural Network,” J. Ilm. Infokam, vol. 18, no. 1, pp. 46–51, 2022, doi: 10.53845/infokam.v18i1.317.
[4] M. E. Al Rivan and Y. Yohannes, “Klasifikasi Mamalia Berdasarkan Bentuk Wajah Dengan k-NN Menggunakan Fitur CAS dan HOG,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 5, no. 2, pp. 169–176, 2019, doi: 10.35957/jatisi.v5i2.139.
[5] D. P. Utomo and M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.
[6] A. M. Siregar and A. Puspabhuana, Pengolahan Data Menjadi Informasi dengan Rapid Miner. Surakarta: Kekata Group, 2017.
[7] M. Arhami and M. Nasir, Data Mining - Algoritma dan Implementasi. Yogyakarta: ANDI, 2020.
[8] P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64–71, 2020.
[9] S. Febriani and H. Sulistiani, “Analisis Data Hasil Diagnosa Untuk Klasifikasi Gangguan Kepribadian Menggunakan Algoritma C4.5,” 89Jurnal Teknol. dan Sist. Inf., vol. 2, no. 4, pp. 89–95, 2021.
[10] H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Angew. Chemie Int. Ed. 6(11), 951–952., pp. 2013–2015, 2020.
[11] M. N. H. S. Muttaqin Muttaqin, Arsan Kumala Jaya, Sitti Harlina, Wahyuddin S, Lutfi Hakim, Mochammad Anshori, Agus Ambarwari, Fergie Joanda Kaunang, Green Arther Sandag, Harizahayu Harizahayu, Green Ferry Mandias, Maria F V Ruslau, Adhi Prasetio, Khaidir Rahman Nasir, Data Science dan Pembelajaran Mesin. Sumatera Utara: Yayasan Kita Menulis, 2023.
[12] E. Ismanto and M. Novalia, “Komparasi Kinerja Algoritma C4.5, Random Forest, dan Gradient Boosting untuk Klasifikasi Komoditas,” Techno.Com, vol. 20, no. 3, pp. 400–410, 2021, doi: 10.33633/tc.v20i3.4576.
[13] S. E. Suryana, B. Warsito, and S. Suparti, “Penerapan Gradient Boosting Dengan Hyperopt Untuk Memprediksi Keberhasilan Telemarketing Bank,” J. Gaussian, vol. 10, no. 4, pp. 617–623, 2021, doi: 10.14710/j.gauss.v10i4.31335.
[14] U. L. Yuhana and A. Purwarianti, “Tuning Hyperparameter pada Gradient Boosting,” J. Edukasi dan Penelit. Inform., vol. 8, no. 1, pp. 134–139, 2022.
[15] S. Suryono, E. Utami, and E. T. Luthfi, “Klasifikasi Sentimen Pada Twitter Dengan Naive Bayes Classifier,” Angkasa J. Ilm. Bid. Teknol., vol. 10, no. 1, p. 89, 2018, doi: 10.28989/angkasa.v10i1.218.
[16] J. J. Purnama, S. Rahayu, S. Nurdiani, T. Haryanti, and N. A. Mayangky, “Analisis Algoritma Klasifikasi Neural Network Untuk Diagnosis Penyakit Kanker Payudara,” J. Pilar Nusa Mandiri, vol. 15, no. 2, pp. 149–156, 2019, doi: 10.33480/pilar.v15i2.601.
[17] R. R. Rerung, “Penerapan Data Mining dengan Memanfaatkan Metode Association Rule untuk Promosi Produk,” J. Teknol. Rekayasa, vol. 3, no. 1, p. 89, 2018, doi: 10.31544/jtera.v3.i1.2018.89-98.

PlumX Metrics

Published
2023-06-03
How to Cite
[1]
Sri Diantika, Hiya Nalatissifa, Riki Supriyadi, Nurlaelatul Maulidah, and Ahmad Fauzi, “IMPLEMENTATION OF MULTI-CLASS GRADIENT BOOSTING TO CLASSIFY ANIMAL SPECIES IN ZOOS: IMPLEMENTASI MULTI-CLASS GRADIENT BOOSTING UNTUK MENGKLASIFIKASIKAN JENIS HEWAN PADA KEBUN BINATANG”, antivirus, vol. 17, no. 1, pp. 32-40, Jun. 2023.
Section
Articles