PENGARUH SUBSTITUSI CANGKANG KERANG DARI ENDE NTT TERHADAP KUAT TEKAN DANKUAT LENTUR BETON fc’= 19,3 MPa

  • Diana Ningrum Fakultas Teknik, Universitas Tribhuwana Tungga Dewi
  • Handika Setya Fakultas Teknik, Universitas Tribhuwana Tungga Dewi
  • Victoria Seda Fakultas Teknik, Universitas Tribhuwana Tungga Dewi
Abstract views: 68 , PDF downloads: 100
Keywords: Clamor shell variation (%),, Concrete quality fc' = 19.3 Mpa,, Compressive Strength and Flexural Strength.

Abstract

The use of concrete for basic construction materials today is indeed increasing rapidly along with the development of construction construction.Only a concrete quality of 19.3 MPa (fc '= 25 MPa) was considered in this study. Since cement, aggregates, sand and water are extracted from nature, they must be limited. So in this study using additional material clam shells. One of them is shells, shellfish waste or shells are usually only used as decorations or toys so that there is still a lot of waste wasted. Inside the shell, the clam contains pozzolan chemical compounds, namely lime (CaO), aluminum oxide and silica. It can be expected to improve the quality of concrete.

As a result of compressive strength test by changing the clamshell to 0%, 10%, 20%, 30%, 40% and 50%, the average compressive strength value of 0% (ordinary concrete) was 15.81 MPa. The addition of a 10% clam shell results in an average compressive strength value of 20.58 MPa. For the addition of clam shells by 20% obtained an average compressive strength value of 23.37 MPa. 30% yields an average compressive strength of 40.31 Mpa, to 40% of 29.12 Mpa. As for the addition of 50% clam shells, the average compressive strength value is 24.79 Mpa. Thus it can be concluded that the addition of clam shells 30% compressive strength value is higher than the compressive strength value of concrete with the addition of clam shells 0%, 10%, 20%, 40%, and 50%The flexural strength test value in terms of the maximum average moment on the beam for each variation of the test specimen is maximum moment value 75.02 kN.m for 0% variation, maximum moment value 62.52 kN.m for 10% variation, maximum moment value 68.77 kN.m for 20% variation, maximum moment value for 30% variation 62.52 kN.m, 40% variation at maximum moment value of 62.52 kN.m. Therefore, the percentage of specimens that can withstand the highest load in the flexural strength test is 0% and the maximum moment value is 75.02 kN.m.

References

BSN. (2013). SNI 2847 Persyaratan Beton Struktural untuk Bangunan Gedung. BSN : Jakarta

BSN. (2014). SNI 7064:2014 Semen Portland Komposit. BSN: Jakarta

W. M. Lolo, A. Karjanto, and D. Ningrum. (2019). Uji Kuat Tekan dan Uji Kuat Tarik Beton Dengan Agregat Kasar dan Halus dari Sumba BaraT Daya pada Mutu Beton= 19, 3 MPa. SENTIKUIN : Malang

BSN. (2008). SNI 1970 Cara Uji Berat Jenis dan Penyerapan Air Agregat Halus. BSN : Jakarta

SNI 2493-2011. (2011). Tata Cara Pembuatan dan Perawatan Benda Uji Beton di Laboratorium. BSN: Jakarta

R. Imani, N. Yanto, dan M. Susiwa. (2019). Pengaruh penambahan abu cangkang kerang darah (Anadara Granosa) sebagai sgregat halus terhadap kuat tekan beton. Majalah Ilmia UPI YPTK. : Padang

Intan, A. Tanjung, and I. Nurrachmi. (2007). in Coastal Water of Tanjung Balai Asahan. Student Fish. Mar. Sci. Fac. Riau University : Riau

Vitalis, E. Samsurizal, and A. Supriyad. (2017). Pengaruh Tambahan Cangkang Kerang Terhadap Kuat Beton. J. PWK, Laut Sipil Tambang : Tamjungpura

A. Junaidi. (2015). Daur Ulang Limbah Pecahan Beton Sebagai Pengganti Agregat Kasar Pada Campuran Beton.Daur Ulang Limbah Pecahan Bet. Sebagai Pengganti Agreg. Kasar Pada Campuran Beton : Jakarta

F. P. Pane, H. Tanudjaja, dan R.S. Windah. (2015). Pengujian Kuat Tarik Belah dengan Variasi Kuat Tekan Beton.Jurnal Sipil Statik : Jakata

SNI. (2011). Cara uji Kuat Tekan beton benda uji silinder. BSN: Jakarta

PlumX Metrics

Published
2023-09-18
How to Cite
Ningrum, D., Setya, H., & Seda, V. (2023). PENGARUH SUBSTITUSI CANGKANG KERANG DARI ENDE NTT TERHADAP KUAT TEKAN DANKUAT LENTUR BETON fc’= 19,3 MPa. Jurnal Qua Teknika, 13(2), 1-13. https://doi.org/10.35457/quateknika.v13i2.3155